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Preface

The purpose of this thesis is to evaluate three possible

choices of the atomic Hamiltonian as the energy operator for

an atom in an electromagnetic field. Confusion between the

Hamiltonian and the energy operator, and misinterpretation

of operators in different representations have plagued stu-

dent and author alike. Hopefully, this thesis will provide a

document that can be used by others looking at the atomic

energy operator or at various forms of the Hamiltonian, since

there appears to be some confusion in the current literature.

There are possible follow on studies suggested by the paper,

primarily in experimental confirmation of the energy operator.

The reader is expected to have had at least a first course

in quantum mechanics.

I wish to sincerely thank Dr. Richard J. Cook for his

patience and assistance during the completion of this thesis,

and for originally suggesting the topic. I must complement

him on his thorough comprehension of the subject, a portion

of which he has passed on to me. Also, I extend my appre-

ciation to Dr. Charles H. Townes for suggesting that a charged

particle reacts equally to a longitudinal or transverse field.

Further, it is difficult to sufficiently commend my wife

Barbara for her support during the course of this program,

and her patience during the long hours of study. Finally, I

wish to thank Cascade for her understanding and constant

companionship during my studies.
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Abstract

Various forms of the atomic Hamiltonian are examined as

the energy operator for an atom in an electromagnetic field,

using the semiclassical approach. The unperturbed Hamiltonian

and the full atomic Hamiltonian have been favorite choices in

the past, but these give different predictions if treated as

the energy operator. The A-p versus r.E controversy is

also examined and clarified. Both choices have conflicts

with observations or physical laws. Gauge invariance and the

Stark effect are considered. The multipole Hamiltonian is

presented and argued as the correct energy operator. Calcula-

tions for three photon absorption in a two level atom, using

time dependent perturbation theory, yield significant differ-

ences in the predictions for absorption rate and resonant

frequency.
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QUANTUM MECHANICAL ATOMIC ENERGY OPERATOR

I. Introduction

Background

In quantum mechanics, the state vector 4,> describes a

physical system, and contains all information that can be

determined about that system. If the state vector is known

for all time, then one can easily predict or explain observed

physical phenomenon. A fundamental postulate of quantum

mechanics is that the Schrodinger equation,

il ht> = H(t)j,> (I i)

governs the time evolution of the state vector, where H(t)

is the Hamiltonian operator for the system. The solution of

this equation provides much insight for atomic and molecular

processes, particularly interactions with light. Unfortu-

nately, the Schrodinger equation is difficult to solve, and

has exact solutions for only a few simple cases. Generally,

approximation methods, such as perturbation theory, are used

to arrive at a solution which gives a satisfactory explana-

tion to observations.

I In the Schrodinger equation, the Hamiltonian generally

represents the total energy of the system. The exact quantum

mechanical form usually originates from the classical Hamil-

tonian. In atomic systems, the form of the Hamiltonian is

1 °
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important for predictions, often through perturbation theory,

of transition rates, lineshapes, multiphoton processes, and

Stark shifts. Different choices for the Hamiltonian can

result in significantly different predictions. The key

question is which Hamiltonian actually represents the energy

of the atom. This has been the source of a great debate and

misconception within the scientific community.

Some confusion arises by the common treatment of the

Hamiltonian and the energy operator as equivalent. In fact,

these quantities are very different in quantum mechanics

(1:326; 2). The energy operator represents an observable, so

its expectation value is the same in any representation. In

general, the Hamiltonian is not an observable. Under a

transformation to another representation, it can describe

I &something other than the energy. This subtle difference is

important since the eigenstates of the energy operator

represent the stationary states of the atom. Care must be

taken when defining what form of the Hamiltonian is to be the

energy, a physical quantity, in a particular representation.

Its expectation value must be invariant under transformation.

For the interaction of light with matter, a central

issue is which form of the Hamiltonian represents the true

energy of the atom (or what is the form of the atomic energy

operator). Historically, there have been two choices for

the energy operator in the semiclassical treatment. Semi-

classical refers to quantizing the atom, but treating the

electromagnetic field classically. The unperturbed atomic

2
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Hamiltonian,

H = + V(r) (1.2)
o 2m

is most often used to represent the atom's energy, where

p is the canonical momentum operator and V is the coulomb

potential due to the nucleus. Others use the full atomic

Hamiltonian,

^ A \ 2

H -( - (t)) +V(r) (1.3)

where A is the vector potential and V is the total scalar

potential. Each of these forms results in a different inter-

action Hamiltonian when the atom is in an electromagnetic

* * field. The first results in the minimal coupling Hamiltonian,

which, in perturbation theory, has transition matrix elements
e

of the form <nI---A . m> , between states of the unper-
mc

turbed atom. The latter yields the electric dipole Hamil- 6_

tonian, which has matrix elements <nI-e-r-.m> . The

difference has caused a great deal of confusion as to which

one to use or if there is indeed a difference.

For several years, the two forms were considered equiva-

lent since they are related to one another through a unitary

transformation (3). Lamb (4:268), however, noted that it is

important to choose the correct form since there is a differ-

ence in the lineshape predictions. Because of the gauge

dependence of A.p , he favors the r.E form. On the

3
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other hand, textbooks routinely expand the full Hamiltonian, --

Eq (1.3), and treat the A-p term as a pertubation (5:459;

6:400-401). It seems well stated by Worlock (7:1327) that,

"the choice is largely dictated by taste and convenience."

The r.E form is found to be more useful in atomic and
IA
molecular applications, where the A.p form is used for

energy bands in crystals. For single photon resonant ab-

sorption, there is essentially no difference in the predicted

rates; however, the two give different predictions for two-

photon absorption (7; 8). Although it is evident that

distinct differences exist, the primary matter of which equa-

tion represents the energy of the atom is still unresolved.

A further point of confusion is the apparent equivalence

of the two forms under a unitary transformation. Several

authors have shown that <ni- --A-plm> and <nI-e-r-EIm>
mc

will yield the same results if properly interpreted (9; 10;

11). Under a unitary transformation, the basis states of a

given representation change. Thus, even though the eigen-

states in each case have the same form, they do not represent

the same state. With this interpretation, the two forms are

indeed equivalent. If the states were considered the same,

the gauge dependence of A would cause the matrix to be

gauge dependent. A change of gauge manifests itself as a

unitary transformation, in such a way that the matrix is

invariant, and the two forms are equivalent (12). While

these arguments are essentially correct, they do not fully

answer which form of the Hamiltonian represents the energy

4
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of the atom.

Until the atomic energy operator is correctly identified,

misinterpretation and confusion will face those studying or

applying quantum mechanics to light and matter interactions.

*m Journal articles still appear that have varying interpreta- -

tions of the energy operator (8; 13; 14). Perhaps in pre-

vious work, where the field intensities were relatively small,

the differences were unimportant. Now, with high power lasers

available that can produce strong fields, the differences will

have a much greater impact.

Thesis Objective

There is an obvious need for clarification on the exact

form of the energy operator. Accurate predictions for

IO several atomic processes depend on the correct choice. The

primary objective of this thesis is to examine analytically

possible choices for the energy operator of an atom in a

time varying electromagnetic field. A second objective is to

clarify the controversy over the equivalence of the A-p

and r.E forms of the transition matrix elements. The

second objective comes as a natural prerequisite of the first.

The choices for the energy operator include the two already

introduced, Eqs (1.2) and (1.3), but because of certain

shortcomings of each, a third choice is presented. This is

the multipole expansion form of the Hamiltonian,

H = 2m + V(r) - er.E + . . . (1.4)

5
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where the terms beyond the unperturbed part are the energy of

an electric and magnetic multipole. This is an infinite

series, but for practical applications, it is truncated to a

few terms. Here only the electric dipole term is considered,

but in those instances where the magnetic dipole or electric

quadrapole is important, the corresponding terms should be

included. Treatment of the multipole expansion form as the

atomic energy operator has as of yet been unexplored.

It is quite clear that due to the extensive nature of

the controversy, the only true test of a particular form of

the energy operator is ultimately to be confirmation by

experiment. As part of arguments for the multipole form,

this thesis details calculations for a three-photon absorp-

tion experiment. There are significant differences between

I o
the predictions of the three possible energy operators.

Final proof of this thesis will have to wait for such an

experiment to be performed, but the objective of examining

possible choices of the atomic energy operator is met.

Assumptions

The thesis considers the semiclassical approach in the

analysis, for reasons of simplicity. The fu1ll quantum

approach is deemed unnecessary for the arguments presented,

and would significantly increase the complexity. In addition,

only the electric dipole term of the multipole expansion is

considered. The magnetic dipole or electric quadrapole terms

could easily be incorporated into the model, if necessary.

* 6



For ease of notation, the bra-ket convention is used

S. throughout.

The experimental calculations use a general two level

system as its model. Several physical systems can be approx-

imated as a two level system, with good results. The per-

turbation calculations become manageable with this assumption.

Finally, in the calculations, the effects of spontaneous

emission is ignored. Again, this serves to reduce the diffi-

culty without hampering the arguments.

* General Approach

The second thesis objective is to clarify the contro- L

versy between the unperturbed Hamiltonian, Eq (1.2), and the

full atomic Hamiltonian, Eq (1.3). Chapter II discusses the

origin and application of the two Hamiltonians. Emphasis is

on the different set of basis states each defines when con-

sidered as the energy operator. The matter of the equivalence

of the transition matrices is also covered here. -

Chapter III addresses the shortcomings of the first two

choices for the energy operator. The true energy operator

must be gauge invariant and must account for the Stark effect

for both longitudinal and transverse fields. Considering the

unperturbed Hamiltonian as the energy operator results in

gauge dependent predictions, and it does not show a Stark

shift. The full atomic Hamiltonian has a Stark shift only

for a longitudinal field, which violates special relativity.

7



The multipolar Hamiltonian is presented in Chapter IV.

The justification is based on the classical multipole poten-

tial and that the Hamiltonian produces the correct Lorentz

force in the classical limit. The Hamiltonian is gauge in-

variant and has a Stark shift for the total field. Finally,

the transition matrix elements have a much different form

than the previous cases, which should result in new predic-

tions.

Chapter V contains a perturbation analysis of the three

cases for three photon absorption. The calculations show

order of magnitude differences in the absolute rates, and

shifted resonant frequencies. These results provide a

possible means to experimentally confirm the correct energy

operator.

8



II. Historical Controversy

Origin of the Hamiltonians

Classically, the Hamiltonian of an isolated single elec-I

tron atom is represented by the sum of the electron's kinetic

and potential energy. In the quantum formalism, the physical

quantities are replaced by operators to arrive at

H ~+ V (r) (2.1)o 2m

the unperturbed Hamiltonian. p is the canonical momentum

operator, -itiV, and V is the coulomb potential due to the
2A

nucleus, *H defines a complete set of basis statesr o

through the time independent Schrodinger equation,

H In> E In> (2.2)
0 n

,L..

In> are the basis vectors which can describe the state

vector:

Ia I, Znn> (2.3)
n

Each of the basis states is also called a stationary state,

and En represents the energy of that state. Most authors

use these basis states for calculations of transition rates,

and E n as the energy levels of the atom. This method, which

9
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will be covered later, is the simplest approach.

*When the atom interacts with an electromagnetic field,

the total Hamiltonian must now include this interaction. The

most common representation of this Hamiltonian is again de-

rived from classical arguments. The nonrelativistic

Lagrangian for a single electron in an electromagnetic field

is

| 2
L -- - e + - A.v (2.4)2 "

where O(r,t) and A(r,t) are the scalar and vector poten--4

tials (15:222). The canonical momentum is then

i - = mvi + c A. (2.5)

The Hamiltonian is defined by

H =EPiV- L (2.6)

which reduces to

2L
2m eo (2.7)

By using operators in place of the physical quantities, the

quantum mechanical form of the total Hamiltonian emerges:

10

S. -.



- . - - ., -- . ",

K.2
=2 - e A(rt) + e (rt) (2.8)

In the semiclassical treatment, the field variables remain as

C-numbers. The scalar potential here is the total scalar

potential, which includes the coulomb potential of the

nucleus.

The primary justification for using Eq (2.8) as the

total Hamiltonian is that the equation of motion for the posi-

tion operator has a form that corresponds to the classical

Lorentz force (6:178-179). Using the Heisenberg equation of

motion,

d . 1 ] 1e

dR.XiH (p e (2.9a)

dp 1 F 3H(2.9b)

The brackets refer to commutation. From these relations, in

a non-trivial derivation, the results become

d ed 1 e dr (2.10)-=eE+ I xB x
2 dt2  2c dd

where

E= - - (2.11a)c 3 t

.. 2.

.. . . . . . ....... . . .-.... .. .•....- ... . . .. . . ... . . . .. . . . ..- .. '....."-.-..... --..

• . . .. . . . . . . . ."., . --- - -- - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - --_,_-_'_'_ _._.- -. -- -- - - -- -



I-..

B= 7 xA (2.11b)

Perturbation Theory

In most applications, the Schrodinger equation is impos-

sible to solve exactly, so approximation methods are often

used. A common method for time dependent Hamiltonians is

perturbation theory, in which the total Hamiltonian is put in . -

the form of an unperturbed Hamiltonian and a perturbation

term:

H 0 + H1 (2.12)

The unperturbed Hamiltonian satisfies the time independent

*Schrodinger equation, resulting in a set of basis states.

HoIn> = E In> (2.13)
n

The set of basis states represents the stationary states of

the atom, and depends heavily on the choice for H0 . The

state vector or wave function is then expanded in terms of

these basis states:

w =Eant In> e'-iEnt/1n (2.14)
n

The time dependent coefficients, a (t) , are interpreted suchn
that n = 2is the probability of being in state In>

12
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Substituting Eq (2.14) into the Schrodinger equation,

(1.1), and making use of Eq (2.13),

an(t) = <nJHIm> am(t)e inm t  (2.15)
m "°

where n= (E - E )/h . These equations define the timen m
evolution of the state vector in terms of the an coeffi-

cients. The matrix element <nIHim> represents the trans-

ition from state Im> to state In>

The transition process depends heavily on the interaction

Hamiltonian and the precise eigenstates chosen as the basis.

Special care must be taken in this latter point. Ideally,

and what is most often assumed, is that the basis states

represent the true energy eigenstates of the atom, and the .

eigenvalues En are the true energy of the states. The

Hamiltonian chosen to represent the energy of the atom, H
0

in this case, determines the basis states. It also determines

the form of the interaction Hamiltonian. The scientific

community appears to be split over which form of the Hamil-

tonian to use as the energy operator. The two major choices

are the unperturbed Hamiltonian H Eq (2.1), and the full

atomic Hamiltonian H , Eq (2.8). They each yield a differ-

ent set of eigenstates and a different interaction Hamil-

tonian.

13
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H as the Enerqy Operator

If the unperturbed Hamiltonian is the energy operator, L

then the energy eigenstates satisfy

H In> = En> (2.16)
0n

Expanding the total Hamiltonian, Eq (2.8), for an atom in an

electromagnetic field,

A2 2
+--p+e k2  (2.17)2m mc 2mc2

assuming that A can be considered constant over the extent

of the atom, so that A and p commute. This is the electric

dipole approximation. Note that A(t) still varies with

time, and the potential is the coulomb potential of the

nucleus. The interaction Hamiltonian is then

S e -e
2  A2

H Ap + -- (2.18)

I mc 22mc 2

The expanded form of the Schrodinger Eq (2.15) becomes

me 2 A2  i o t
1~) A .P + -A Im>a e mn (2.19)

mc 2mc2 m

The A2  term in the transition matrix adds a common phase to

the amplitudes a ; thus, it can be ignored. Most textsn

disregard the term since it is small compared to the A • p

14
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term (6:400). The transition matrix reduces to

<n- e_ . p m> ; this is the minimal coupling inter-
mc

action form.

The A • p form of the transition matrix is commonly

used in calculations to predict transition rates, lineshapes,

etc. The basis states, In> , are assumed to be the eigen-

states of the energy operator, H in this case, and the
0

transitions are between these states. However, one obvious

issue arises. A is the vector potential, which is not

unique for a given electromagnetic field. A different choice

of potentials,

A A + VG 9G (2.20)

where G(r,t) is an arbitrary function, yield the same

and B fields, according to Eq (2.11). These gauge trans-

formations do not alter physical quantities, but transforming

A , in this case, changes the value of the transition matrix.

The interpretation of the matrix elements as representing

transitions between the energy eigenstates results in gauge

dependent predictions, although this is a common practice in

calculations.

H as the Energy Operator

Another choice for the energy operator is the full atomic

Hamiltonian, Eq (2.8). This defines a different set of basis

states which are time dependent, since the Hamiltonian is

15



time dependent:

H(t)jn(t)> = En In(t)> (2.21)

It will be shown that the energy eigenvalues are constant and

equal to the eigenvalues of the unperturbed Hamiltonian.

To justify use of the full Hamiltonian as the energy

operator consider an energy operator equal to the sum of the

potential and kinetic energies

E=-m2 + V() (2.22)
2

1- e
In an electromagnetic field, v - (p - A) and V(r) = ,m c
which upon substitution, is Eq (2.8).

. The eigenstates of the energy operator are derived by a

unitary transformation, S , of the time independent Schro-

dinger equation. If H does indeed represent the energy of

the atom, then the eigenvalues are unchanged in the trans- -:

formation, and Eq (2.21) transforms as

H In>* = EnIn>* (2.23)

where

H = S H S (2.24)

in>* = Sin(t)> (2.25)

16
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With the unitary transformation defined as

S = exp ier At)/ti (2.26)

(t) /-.hi

then

- 2

H =P- +e (2.27)
2m 1 .

H has the same form as the unperturbed Hamiltonian, and has

eigenstates In>* that are of the same form as the previous

case. However, the unitary transformation causes a change of

representation, so the new eigenstates are the same as the

unperturbed states. The true energy eigenstates are In(t)>

which are related to the unperturbed eigenstates by

In(t)>= S+In>* (2.28)

Again, the energy eigenvalues are the same, which can cause

some confusion, but H and H result in very different
0

sets of energy eigenstates.

AL

Choice of H as the energy operator also results in

different physical predictions. Expanding the state vector

in terms of the energy eigenstates,

_iEn t/h

Cn(t) In(t) > e (2.29)
m

17
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Substituting Eq (2.29) into the Schrodinger equation,

Cn(t) = -Z<n(t) I m(t)>Cm(t)e lmnt (2.30)
m

Using Eq (2.28) this becomes

IA

(t) = 4l *<n - er-'Em>*Cm mnt (2.31)

The position operator has the same form in both representa-

tions, since it is unaffected by the unitary transformation.

The transition matrix can then be written as <nl-er . Im>

where the eigenstates are those of the unperturbed Hamil-

tonian. This is the electric dipole interaction form.

The Schrodinger equation for the two Hamiltonians,

- O Eqs (2.19) and (2.31), have the same form except for the

matrix elements, or more specifically, the interaction Hamil-

tonians. In both cases, the matrix elements are calculated

with the unperturbed eigenstates, even though they are differ-

ent than the energy eigenstates for H. The minimal coup-

ling form is gauge dependent in this interpretation, due to

its dependence on the vector potential A . On the other

hand, the electric dipole form is a function of the electric

field, which is gauge invariant. If the matrix elements are

to describe some physical process, the value cannot depend on

the gauge. This demonstrates a clear difference between these

two forms of the energy operator. Unfortunately, there is

i8



still much confusion since the two forms are related by a

unitary transformation. In quantum mechanics, physical pre-

dictions are not altered by unitary transformations; thus,

the two forms have been considered equivalent. Yet, it is

obvious that there is a difference. This problem deserves

some investigation due to the wide spread misuse of this

equivalence.

Equivalence of A-.2 and r.E

Several authors have addressed the equivalence of the

Aep and r-E forms of the transition matrix (3; 9; 11; 12),

but due to widespread misinterpretation and its relevance to

this thesis, it deserves mention here. The main problem is in

the interpretation of the "unperturbed" basis states in each

** transition matrix. It is assumed that both refer to the same

set of basis states, but this is not the case. The numerical

values are the same, but they are states in two different

representations.

Consider first the full atomic Hamiltonian, Eq (2.8),

H = i (p - - A) + e (2.32)2m c

In this equation, p is the canonical momentum operator, not

the kinetic momentum. The kinetic momentum is given by

mv= (p A- ) (2.33)

19
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Expanding Eq (2.32) in the electric dipole approximation,

^ 2 2
eH - A' p + e A2 (2.34)mc 2mc 2

The first two terms are in the form of Ho  , the unperturbed

Hamiltonian, but the true unperturbed Hamiltonian differs in

that the canonical momentum p is also the kinetic momentum.

Expanding on the basis states of H as before, the Schro-

dinger equation becomes

i^ iW t
an = .. _<nl- 2-- A.plm>a e nm (2.35)n f mc m

n

The electric dipole form of the Hamiltonian can be de-

rived by applying the unitary transformation of Eq (2.26) to

the Schrodinger equation. The Schrodinger equation becomes

ihn= HI4> (2.36)9t

where

= SI'j> (2.37)

H = . H S - iS (2.38)

Substituting Eq (2.32) into (2.38),

20



A2

A° -

H = + e - er.E (2.39)
2m

where E is given by -1/c 3A/at . Again, the first two

terms have the form of the unperturbed Hamiltonian. Expanding

on the basis states of Ho
0o

^ i~nmt
a ,<nI- er.Eim> ame (2.40)&n =i n

n

Thus, it appears that Eqs (2.35) and (2.40) are identical

except for the transition matrix. This misinterpretation has

plagued scientists, and lured them to believe that it is

equivalent to use either form (7:1327).

Upon careful examination, two mistakes emerge. In the

unperturbed Hamiltonian of Eq (2.39), p actually represents

the kinetic momentum, unlike the earlier case. Consider the

unitary transformation of the kinetic momentum,

mv=Smv S (p -- S (2.41)c -.

S and A commute, but

asS p =p S + ih i"

= p S +eA S (2.42)c

21
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Thus,

mv = p (2.43)

The basis states of Eq (2.40) are distinct from the those of

Eq (2.35).

The second mistake involves the interpretation of the

coefficients a It was assumed that in both cases, an n
represents the expansion coefficients of the state vector on

the unperturbed basis states. The transformation of the state

vector must also transform the basis states. This is a mis-

take often made in the literature (13:625,631).

Ss> =Ea n ISn> (2.44)
n l

Recall Eq (2.25)

in(t)> = Sin> (2.45) .1

Thus, in the second case, an are the expansion coefficients

of the time dependent basis states.

Eqs (2.35) and (2.40) are indeed related to one another

and can be considered equivalent if properly handled. Physi-

cal predictions will then be invariant in either case using

the correct interpretation. Unfortunately, this still does

not address the problem of the form of the atomic energy

operator. The two possibilities still exist; the unperturbed

Hamiltonian H or the full atomic Hamiltonian H . A better
0
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argument currently exists for H , since treating H as the
0

energy operator results the transition matrix involving A.Xp

which is gauge dependent.
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III. Limitations of H and H as the Energy Operator

The correct choice of the energy operator must be consis-

tent with experimental observations and physical laws. The

results of physical predictions must be gauge invariant, since

the choice of gauge is arbitrary. Observed phenomenon such as

the Stark effect must also be accountable in the theory.

Finally, the theory must be consistent with the theory of

special relativity. Neither H nor H meet these require-
0

ments, and thus do not accurately represent the true energy.

Gauge Invariance

Electric and magnetic fields can be described in terms

of the vector and scalar potentials, Eq (2.11). However, the

potentials are not unique; a different set of potentials from

Eq (2.20) yields the same fields. This demonstrates that the

potentials are unphysical, and only the fields are important

physically. An additional condition, a gauge condition, can

be imposed on the potentials without affecting the outcome.

An often used condition is the coulomb gauge:

• .A=0 (3.1)

With this condition, the operators A and p commute, and

the electric field can conveniently be expressed in terms of

its longitudinal and transverse components (16:125). The

longitudinal component of a vector field, V , is defined as
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V xVL = 0 (3.2)

The transverse component obeys

V VT =0 (3.3)

The electric field, in coulomb gauge, is then E = EL + ET 

where

' EL = @

k .E

1T c at (3.4)

The magnetic field is always transverse:

= BT = 7 x A (3.5)

Expressing the full atomic Hamiltonian in this gauge is use-

ful, although not necessary. Any accurate physical model does

not depend on the gauge chosen for its predictions.

Since the full atomic Hamiltonian, Eq (2.8), depends on

the potentials, its behavior under gauge transformations

should be understood. The Schrodinger equation is form invar- -

iant under a gauge transformation (1:323-325), meaning that

Eq (1.1) takes the same form in any gauge:
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dt

,.. -.. "

H'(t) + e -(t) (3. 6'
TM\%"

Although p does not change form in the new gauge, it repre-

sents a different quantity. Remember, p is the canonical

momentum, which is not a true observable. The change in p

results in a change in the basis states in the new representa-

tion if the eigenvectors of H are used.

A gauge transformation is equivalent to a unitary trans-

formation to another representation (1:321), given by

U = exp i G(rt) (3.7)

where G is an arbitrary function which determines the

gauge. For an operator, T , to represent a physical quan-

tity, the following condition must be met:

T =U T U (3.8)

where TA v) is the operator in the new gauge, and T
u

is the transformed operator. For example, consider the true

momentum given by Eq (2.33),

mv = (p - A) (p A - VG) (3.9)
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mvu  U(p e A)U ( -VG A) (3.10)c -c c:L-

As expected, the true momentum is gauge invariant, v' v

For a Hamiltonian, this is not generally true, unless it is

the true energy operator of the atom.

If H is considered as the energy operator, then its

exact meaning changes based on the interpretation of p

in the given representation. Even though the form remains

the same, Ho  is an unphysical quantity, as is p . H is

gauge dependent in this manner. Another way to see this

result is to consider the transition matrix element,

<nlP.lpm> . The basis states are the energy eigenstates of

HO  , but A is gauge dependent. Thus, physical predictions

become gauge dependent if H is treated as the energy
0

operator.

Next consider the full atomic Hamiltonian, H , as the

energy operator. Again, the operator must be gauge invariant

to represent a physical quantity. At first glance, the opera-

tor appears to be gauge dependent because of the gauge trans-

formation of the scalar potential in H

^ e Gp - e- + e - -t I

2m c ca9t

Hu  - G (3.11)
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This is true only if the potential, , is the scalar poten-

tial. However, in the energy operator, the potential is ac-
L

tually the coulomb potential,

qi 
:

= ^ ^ (3.12)""-"= i 1 - -

which is gauge invariant since charge q and position r

are invariant quantities. Hence, the Hamiltonian is also

gauge invariant.

The total potential can be expressed as the sum of the

potential due to the nucleus, 4o , and that due to external

sources, $ext

0= o + ext (3.13)

The second term is then expanded with a Taylor series to

arrive at a multipole expansion,

(ext = (0) +7t(0).r +

= t(0) - E r r + "" (3.14)

Ignoring the constant, 4p(O) , and the higher order terms

H 2 e-2e

T - A) + e 0 L (3.15)
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Thus, the full atomic Hamiltonian is shown to be gauge

invariant when handled in this way. Note also, that the

transition matrix <nI-er.EIm> , which results from the choice

of H , is also gauge invariant, since it depends upon the

electric field, and the states In> are gauge invariant.

Stark Effect

The Stark effect is a shift in the atomic energy levels

for an atom in an external electric field, and has been widely

observed and reported. The true energy operator for the atom

must reflect this energy shift. The unperturbed Hamiltonian

contains no terms which include external fields; hence, its

energy eigenstates are independent of the external fields.

No Stark effect would be observed if H were the atomic

energy operator. The external field would simply cause trans- -.

itions between the eigenstates. The lack of a Stark shift is

a strong argument against the unperturbed Hamiltonian as

the energy operator.

The full Hamiltonian, Eq (3.15), includes the term

-er.E , so the energy eigenvalues are a function of the
L

external field. Transforming the energy operator, Eq (3.15)

with the unitary transformation of Eq (2.26),

= S H S

Ho -er'EL (3.16)
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The energy eigenvalues of H , which are equal to those of

H, exhibit a dependence on the longitudinal portion of the

electric field. The eigenvalues do not depend on the trans-

verse component. A transverse field causes transitions

between the eigenstates. This conclusion is, however,

erroneous.

A charged particle cannot distinguish between the longi-

tudinal and transverse portions of the electric field. If

taken individually, the components are unphysical. Only the

two combined together have a physical consequence. It would

seem that the atom should then exhibit a Stark effect for

both the longitudinal and transverse portions of the electric

field.

The longitudinal electric field in coulomb gauge is

qi 
-

EL -  (3.17)

which is the instantaneous coulomb field. This shows the

unphysical nature of EL , since an electric field travels

at the speed of light, not instantaneously. If the Stark

effect were dependent on the longitudinal field only, then

there could be instantaneous knowledge of change in a charge

distribution at a large distance, in violation of special

relativity. Thus, the Stark effect must depend on the total

electric field. In the total electric field, the unphysical

portion of the transverse component cancels the unphysical
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part of the longitudinal component, insuring that the field

obeys special relativity (16:125; 17). The total Hamiltonian,

which exhibits a Stark shift for only the longitudinal field,

is then not the proper choice for the energy either.

Another Hamiltonian

The two choices normally considered for the energy opera-

tor have been shown to have some deficiencies. A strong argu-

ment exists against the unperturbed Hamiltonian because of its

gauge dependence and lack of a Stark shift. The full Hamil-

tonian, although gauge invariant, shows a Stark shift for a

longitudinal electric field only, which is in violation of

special relativity. These arguments suggest that there must

be yet another form of the Hamiltonian which represents the

* Q energy of the atom.

A reasonable choice is the full multipolar Hamiltonian,

which consists of the unperturbed Hamiltonian plus the multi-

pole energy expansion. In the electric dipole approximation,

this is

H = + V(r) - er (E + ET) 3.18)
2m L T

This form reacts to both the longitudinal and transverse

electric fields equally; thus, there is no violation of spe-

cial relativity. In addition, if V(r) is the coulomb

potential of the nucleus, the Hamiltonian is also gauge

invariant. Thse topics are discussed in more detail in

the next section.
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IV. Multipole Hamiltonian as the Energy Operator

The Multipole Hamiltonian

The multipole form of the atomic Hamiltonian is usually

derived from a unitary transformation of the full atomic

Hamiltonian, Eq (2.8) (16:166-167; 18). The final result is

+ e (r) + e r E T (Xr)dX (4.1)
0

where ¢(r) is the instantaneous coulomb potential due to

the nucleus and any external charges. This Hamiltonian

* O depends on the electric and magnetic fields instead of the

potentials. Expanding the integrals and the potential, 4(r)

results in the convential multipole expansion. Note that the

expansion of the potential contains the longitudinal electric

field, EL ; thus, the Hamiltonian depends on the total

electric field.

It is the intent here to show justification for selec-

ting Eq (4.1) as the energy operator based on the classical

energy arguments and the requirements presented in the pre-

vious chapter. Detailed calculations for the full expansion

are not included, since this thesis deals solely with the

electric dipole portion for simplicity. The method can be

extended to additional multipole terms as necessary.
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Even though two Hamiltonians are unitarily related, it is

conceivable that just one represents the energy operator. Z-

The interpretation of dynamical variables changes under a

transformation (19), so the two Hamiltonians can mean very

different things. Recall that under a unitary transformation,

the Hamiltonian transforms as

at (4.2)

On the other hand, the energy operator transforms as

Li .

= sE s (4.3)

U If a Hamiltonian is the energy operator in one representation,

the transformation of that Hamiltonian, under Eq (4.2), can

represent something much different in another representation.

This allows selection of Eq (4.1) as the energy operator

despite the fact that it is unitarily related to Eq (2.8),

which has been shown not to accurately represent the true

energy of the atom.

For the derivation of the electric dipole form, consider

the transformation of Eq (2.8) with the electric dipole

approximation, where the vector potential A is a function

of t only. The full Hamiltonian is

S+ -_ e (t)) + (r) (4.4)
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In Eq (4.2), let the unitary transformation be

S = exp ier A(t) (4.5)

Using the fact that S commutes with c(r) and A(t) , and

that

p = - ih Is (4.6)
ar

the electric dipole form of the Hamiltonian becomes

^ -2 A A

H'= P- + ed(r) - er • E (4.7)

where ET - -9At is the transverse electric field in coulomb
T at

gauge. Expanding c(r) , as in Eqs (3.13) and (3.14),

2 "
= + e~o - er ( +(4.8)

where is the coulomb potential of the nucleus. This is

the dipole form of the multipole expansion; it contains both

components of the electric field. Choosing Eq (4.8) as the

energy operator is a different case than selecting the full

atomic Hamiltonian, Eq (4.4).

To justify use of the multipole form of the Hamiltonian,

consider the classical definition of energy, the sum of

kinetic and potential energies. The kinetic energy can be
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*. written as p /2m ; in this case, p = my . The potential

energy of the electron depends on the coulomb potential of

the nucleus, and the electromagnetic field:

V(r) = eco E +VB (4.9)

The potential energy of an electron in an electric field is

given by the expansion (20:101)

V = e No) - er *E(o) - . .Qi .x i  + ... (4.10)
E 61 . iJ 3x.i

These are the monopole, dipole, and quadrapole terms of the

electric multipole expansion. Oij is the quadrapole moment

tensor. Similarly, the magnetic multipole energy can be ex-

panded (20:148-150). For the magnetic dipole, m ,

V = -m * B + ... (4.11)B

Thus, the total energy can be written as

E= 2m+e1 - er E - ... ]
2m

+ • + ... (4.12)

This is of the same form of the multipole Hamiltonian, when

operators are used in place of the physical quantities.
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Based on these arguments, the Hamiltonian of Eq (4.8) is

a reasonable choice for the energy operator in the electric
-.

dipole approximation. The electric dipole approximation is

valid when the electric field has a negligible variation over

the extent of the atom. If electric quadrapole or magnetic

dipole interactions are important, then these terms should

also be included in the Hamiltonian.

A further justification exists in the classical limit of

the equation of motion, that results from this Hamiltonian.

di H Pi
- m = (4.13a)Pi m

dpi aH H
d = -- = e---- e-- (r.E) (4.13b)

Sx i  3 xi  3xi  .

In the dipole approximation, E = E(t) , so

d r e -,.-.
dr _ E (4.14)

dt 2  m

which is the equation of motion for an electric field. Note

that the gradient of the nuclear potential merely adds an

additional electric field. If the full multipole expansion

were used as the Hamiltonian, the proper Lorentz force law

would result.
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Gauge Invariance and Stark Effect

The energy operator, given by Eq (4.8), satisfies both

the requirements of gauge invariance and a Stark shift for

the total electric field. The Hamiltonian consists totally

of gauge invariant quantities. The momentum operator repre-

sents the kinetic momentum. The potential is the coulomb

potential of the nucleus. Finally, the electric dipole inter-

action term depends on the electric field, which is gauge

invariant. In another gauge the Hamiltonian becomes

.2.2.

H- 2 + e~o - er • E = Hu (4.15)

since p = p and r = r . This differs from the previous

case when p transformed to p - evG , and p was the
e X

canonical momentum given by p = my + A A
c

In the interaction term, the electric field is the total

field; thus, Stark shifts occur equally for either a longitu-

dinal or transverse field. This prevents the violation of

special relativity, as in the previous case. Furthermore, the

Stark shift for a transverse field provides a possible means

of experiemental confirmation of this Hamiltonian, if strong

enough fields can be generated. The previous choices pre-

OL dicted no Stark shift for a transverse electric field, only

transitions between eigenstates. The other terms of the

multipole expansion allow shifts due to magnetic fields (the

Zeeman effect), quadrapole fields, and so on.
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With the new Hamiltonian expression for the energy opera-

tor, quantum descriptions of physical processes differ from

the predictions of the previous two cases. One significant

difference is that the energy operator is now a function of

time, and can not be transformed to a time independent form.

The eigenvalues will then be functions of time also. In the

previous cases, the energy operator was either the unperturbed

Hamiltonian, Ho  , or transformed to the form of Ho  , so

the energy eigenvalues were constant. In the end, the dif-

ferences in the predictions of the three Hamiltonians provide

a means to determine the correct energy operator by correla-

tion with experimental observations.

Dynaics of the Multipole Hamiltonian

For a time dependent Hamiltonia, the solution of the

Schrodinger equation is not a stationary state. The expansion

coefficients of the state vector are time dependent. When the

multipole Hamiltonian is considered as the atomic energy oper-

ator, the energy eigenstates and eigenvalues are also func-

tions of time. The resulting solution of the Schrodinger

equation involves a state vector whose expansion coefficients

and basis states are time dependent. In other words, the

interaction with light causes both a shift in the energy

states and transitions between the states.

In the electric dipole case, the Hamiltonian is

H(t) = 2m + eo (r) - er E(t) (4.16)
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For optical frequencies and lower, the electric dipole form is

sufficient since there is little variation of the electric

field over the extent of the atom. The magnitude of the mag-

netic dipole term is a factor of 1/c smaller, so it can be

ignored. Because H(t) is the energy operator, the energy ".-

eigenstates and eigenvalues satisfy the instantaneous time

independent Schrodinger equation (6:289),

H(t) n(t)> = En(t) ln(t)> (4.17)

The state vector is then expressed in terms of the instan-

taneous solutions

O I*> : n(t) ln(t)> exp -N E Et)dt (.8

where a are time dependent coefficients. The state vector

satisfies the time dependent Schrodinger equation

at = H^ t j >(4 19)

For ease of notation, the explicit time dependence of the

various terms will be dropped. Substituting Eq (4.18) into

(4.19) and simplifying,

1 l t * - [l it i1

In> exp Endt = - nn> exp[L hEt
n n (4.20)
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Multiplying both sides by <kI

Ak = -Ean<kIn> exp (EnEk)dtA (4.21)

This is an expression for the time rate of change of the

expansion coefficients. An expression for <klA> comes from

differentiating Eq (4.17) and multiplying by <k"

3En
<kI3 In> + <kIHIA> = <kj - n> + <klEin> (4.22)

For k n

<k Tn n> = <kln> = 0 (4.23)

<kIH In> = <kIEkIn> (4.24)

Thus, Eq (4.22) becomes

<k I - In>
<kl> E- n k (4.25)E-Ek ..

n k

For the case of k = n , it is possible to put a condition

on the phase of the eiqenstates, such that <nlA> = 0 (6:290). I
The final relation for the coefficients is

n an L <kl'n> exp i dtj (4.26)
ak = -n40
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whe re

w t)=En(t) -Ek (t) (4.27
Wn nt k (4.27)
nk

This relation describes transitions between the time depen-

dent energy eigenstates.

The form of Eq (4.26) is considerably different than its

counterparts for the first two Hamiltonians, Eqs (2.19) and

(2.31). The transition matrix depends on H/at , which is

- er.f-/;t in the electric dipole form. The exponential

term contains an integral, since the transition frequency is

time dependent. Finally, recall that the eigenstates are

functions of time, as well. In the previous case of the

full Hamiltonian, Eq (2.30), the eigenstates are functions of

time, but are unitarily related to the unperturbed eigen-

states, simplifying the solution. Unfortunately, this is not

the case for Eq (4.26). These differences translate to a

significantly more difficult solution when applying Eq (4.26)

to a particular experimental setup.

Physical predictions using the multipole form for the

energy operator should differ from those of the unperturbed

or full atomic Hamiltonian. The choice of the energy opera-

tor is most important in describing such phenomenon as multi-

photon processes, atomic lineshapes, non-exponential decay

rates, and absorption sidebands. The difference in predic-

tions of the three models is a means of confirming the

correct choice for the energy operator. Already, a possi-
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bility exists in the Stark effect for a transverse electric

field. The multipole Hamiltonian is the only one that has an

equal dependence on the longitudinal and transverse electric

fields. Measuring a Stark shift for a transverse field

should distinguish between the various Hamiltonians. This

is not a trivial task, since very strong fields are required.

Another possibility is in the explanation of the absorption

sidebands for OCS in a time varying electric field, observed

by Townes et.al.(21:273-279; 22). Townes uses a perturbation

calculation, but the multipole Hamiltonian may yield a better

explanation. This is an area for further study.

In any case, the multipole Hamiltonian is a plausible

choice for the energy operator, and could be used to explain

many physical phenomena. In the next chapter, a multiphoton

process is examined to show the different predictions of the

three energy operators, and provide a means of experimental

confirmation.
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V. Three Photon Absorption Calculations

The ultimate confirmation of the multipole form of the

Hamiltonian as the energy operator depends on correlation

with experimental results. Comparison between the predictions

of Eq (4.26) and those of the other two choices, Eqs (2.20)

and (2.31), should indicate the proper choice. One physical

process which has a significant difference between predic-

tions is three photon absorption. This last chapter details

the calculations for three photon absorption of the three

Hamiltonians. Order of magnitude differences exist, as well

as a difference in the resonant frequencies.

To simplify the calculations, a two level system is

assumed. This is a reasonable assumption, since many atomic

systems can be approximated in this way or forced into such

a condition. In addition, spontaneous emission is ignored

in the calculations, which allows much simplification of the

rate equations. If the experimental evaluation is made on a

time scale short compared to the spontaneous emission rate,

the assurntion is valid.

Calculations for H and H
- o

The Schrodinger equation for the full atomic Hamiltonian,

SH, can be expressed in the form of Eq (2.31),

1 A inm t
an -enlerj.Em>ame (5.1)
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where the coefficients an  represent the expansion coeffici-

ents of the true energy eigenstates. The eigenstates in the

- transition matrix are those of the unperturbed Hamiltonian,

Ho En> = £nl n> (5.2)

If the atom is assumed initially to be in the ground state of

a two level system, then the time evolution of a2 describes

the absorption rate for a given electric field. The solution

of Eq (5.1) involves the use of time dependent perturbation

theory. For three photon absorption, third order perturba-

tion terms are required.

For a two level system, Eq (5.1) becomes a pair of

coupled rat. equations:

_i~ o t  •[1%-.
al = >a2 e (5.3a)

1 ^ +iWot
a2 = C2 -ereEjcl>ale (5.3b)

where the transition frequency is defined as

0 - (5 .4 )W0o h

and H" = -er.E is the perturbation. Let the electric field

be linearly polarized, and defined as E = coswt where

is the orientation unit vector. Also define
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The transition matrix for this two level system is

H' (5.6)

Eqs (5.3) then become

-iW t
a=i 2a coswt e -(5.7a)

1i t

* 0a2=iga coswt e (5. 7b)

I ~ where 0 is the Rabi frequency.

From time dependent perturbation theory, let

H' - Xer.Ef (5.8)

(~0~) (1) 2a 2
a~ (t) a n t + Xa 1 (t) n (t) + .. (5.9)

Substituting into Eq (5.1) and equating powers of X

(in) it iW n tAd- (5.10)
k~n dt'

n0

This equation expresses the mth order perturbation in terms

of the previous one. Eqs (5.7) then become
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m a m coswt e dt (5.11a)

I2
t (mI+i W t .

a~m  = aa ) coswt e d dt (5. llb).''-•o.

If the two level system is initially in the ground state,

a( 0 ) (t) = an (0) = 6n1 " The first order perturbation is

a{') =0 ,and1
a 2= i coswt e

9L

_i(o+ w)t_ 1 i o-W)tl 1
=~ L ew w+e (5.12)2 W 0+W Wo-W

This is the familiar first order perturbation calculation,

which describes resonant single photon absorption. When w

approaches the transition frequency, wo  , the second term

becomes relatively large, and a2  takes the form of a sinc

function. The sinc function has a series of sidelobes which

are unphysical. This results from the unnatural assumption

of an instantaneous switching on of the electric field, and

is not physically significant.

The second order perturbation is

a 2 )= ia l) coswt e dt (5.13)
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(2e 2 it 1  t 
1 4 2 w (w0+W) + w

-__i (wo-W) t -i (w +) t
0 e__ -1 e

2+ e - +e-I,-

2 2 Wo wo+W

t e-2i1t- 1 (

+ O- W  2w (w-W) (

The third order perturbation uses Eq (5.14)

t iw t

a i3)=i a(2) coswt e 0 dt (5.15)

Expanding the integrand,

a (3 i(w +3w)t i(w -w)t

22w0 (o) 2w (Wc +W)

w 0w
0

2wot t i(w 0+)t iw W)t
+ 2 e + e

2 2w oC ~
wo

Si(wo +W)t i( 0- 3w)t -"-

O 2w(wO-w) dt (5.16)
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This equation finally yields the three photon absorption

term. When w=w /3 , the last term becomes slowly varying,
0

and thus increases greatly after integration. It is the only

physically significant term, although other terms of the form

S1/wo w are also slowly varying. These additional terms are

essentially constant over the range of interest, w /3 .
0

thus, it is felt they are unphysical and a result of a limita-

tion in the perturbation approach. Further justification for

ignoring these terms is given when the final solution is com-

pared to an exact solution of this problem. Dropping the

unnecessary terms,

t (w3w)t

a e dt

0

i(Wo-3w)t
= ( 2 O- O(5.17)

For three photon absorption, w-w 0/3 , there are no

contributing factors from the first order perturbation,

(3)Eq (5.12). The upper level coefficient is then a2 = a 2
The probability of being in the upper energy state is

2 .
P 2 (t) = a2 (t) 2 (5.18)

which can be written as
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6 sin 2(W -3w)t
P2(t) 8 2 0 (5.19)2 256 w 4 (W - 3 w) 2

0

This equation represents the probability for three photon

absorption for the full atomic Hamiltonian. The resonant

frequency is w = w /3 7

0

As a comparison, the exact solution from Shirley (23:983-

985) is •21[7,14 + 2] t
sin'g|-- + (3w-w ]t

P() 81 Q 6 w4O

2 256 4  Q4 2 (5.20)
0 4 4+ (3w-w O )
wo 2

4 00

The two equations are very close for small t. When

(3w-w ) 2> ,4/44w , the equations are 'the same, and as w

approaches w /3w , they have the same limit. If t is
0

large, the perturbation method is not valid, since the per-

turbation is assumed to be small. The favorable comparison N

gives further justification for ignoring the extra terms of

Eq (5.16). The results from the perturbation calculation are

also comparable to the method of Autler and Townes (22).

Treating the unperturbed Hamiltonian as the energy

operator results in a perturbation of the form

H= -e/mcA'p , and after Eq (2.19), the Schrodinger equa-

tion becomes

1 ' e I icJ tnmt t
an T ~ n TKm>am e (5.21)
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The only difference between Eq (5.21) and Eq (5.1) is the

transition matrix. Kobe (13:626) shows that the matrix

elements are related such that

<Cnlm 1 " 2m> - <EnlerElEm> (5.22)

Thus, the development tor the unperturbed Hamiltonian paral-

lels the previous calculation except for a constant. Each

perturbation term changes by a factor of wo/w For a

third order perturbation, the expansion coefficient is multi-

plied by (wo/W) . The probability of being in the upper

energy state is now

P (t) =(!LO) p2(t (5.23)

.2: A,

Thus, for H ,the probability for three photon absorption
0

is

6 sin 21 (W3t
P (t) 93 81 2(t)70 (5.24)

Aop WO (W -3w)

The result is about three orders of magntiude greater than

that of the full Hamiltonian.

Multi2ole Hamiltonian Calculation

The final calculation is for the multipole Hamiltonian,

which presents some distinct differences, primarily due to

the time dependence of the energy eigenstates and eigenvalues.
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The general method of solution is to solve for the instan-

taneous eigenstates and eigenvalues of Eq (4.17), treating t

as a constant parameter. The instantaneous solutions can then

be used in Eq (4.26), which can then be solved using time

dependent perturbation theory.

For a two level system, Eq (4.26) becomes a pair of

coupled rate equations

a2 ot

2<l H 12> e (5.25a)
al 1 at.

"~h 2t 1

a A i iftw2jdt,
a 2 1 1 e (5.25b)
2 hw21  at

Solution of these equations is not trivial due to the time

dependence of the eigenstates and eigenvalues. The energy

eigenstates, In> , are the instantaneous solutions of the

time independent Schrodinger equation

H(t)In(t)> = En(t)In(t)> (5.26)

The solution follows the method of Cohen-Tannoudji (1:406-408),

420-423). The multipole Hamiltonian can be written as

H(t) = H - er.E(t) (5.27)
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Using the unperturbed eigenstates IEn> as the representation

basis set, H can be expressed in matrix form:

H = <EnIi [ E 1 (5.28)Hnm <n H m =  -cot

where is defined by Eq (5.5). Diagonalizing H deter-nm

mines the true energy eigenvalues,

rr-

E = 1 - i 2 +2 Cos 2 Wt (5.29a)1 2 1%+2) 2 Lo jo

E (= 1 E W +Q 2w +2Cos 2 Wt J(5.29b)

where again

W :2-iw = _

0 'h

The instantaneous transition frequency is

W(t) = [ 2 C2o t (5.30)

which oscillates in time, above the unperturbed value. The

oscillation may be the primary cause for such phenomenon as

multiphoton absorption and absorption sidebands. The eigen-

states, in the E representation aren
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/ose e n
11> 1 (2> (5.31)6)

where

tan2e coswt (5.32)
W0

The transition matrix of Eq (5.25) can now be determined

using Eqs (5.5) and (5.31):

= _ er*-- (5.33)

<11~L12> =hwSI cos26 sinwt =<21-LI1 (5.34)

From Eq (5.11),

W
0 0cse= [ 0cos2osw] (5.35)

Thus, Eqs (5.25) become

W 0WQ -if~tw 'dt
=-a 2 - sinwt e (5.36a)

2 =a 1  A2sinwt ejW t (5.36b)

These are exact equations, but approximations must be used to

arrive at manageable solutions.
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From time dependent perturbation theory, let

aH - e_ E
at = • e (5.37)

an (t) a () + a (n (t) + a (2) (t) + . (5.38)

Substituting into Eq (4.26) and equating equal powers of X

'S Ct<k IL H In> (5.39) dt
(m) t -(m-l) atse( . 9
k n#k hwnk

This equation is comparable to Eq (5.10).

If the two level system is initially in the ground state,

the first order perturbation for the upper energy level is

0i dt'

2 (t) f W.2 sinwt e

0

, [. 2 + 2COS2Wt (5.40)

The instantaneous transition frequency w' can be expanded

A 2 2"

2 W 2w 0 Cos Wt ... (5.41)

Higher order terms can be ignored provided 4 /4w 4 << 1
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The integral in the exponential becomes

=~t t + sinwt

0 4w0  8w W

0

0 8w s + £. (5.42)

where wo W 0 + E2 2 /4w 0 is the shifted transition frequency,

as will be shown later. This shift is a function of the field

strength, ,which demonstrates the Stark effect for a

transverse field. The exponential can be expanded as a series

of Bessel functions (24:361):
o-S

+izsin6 =Z nzein6 53
* e- n=-o -

For z << 1. (24:358),

(Z) (21z)(.4

Using Jn=(1 ~ and r (1) F 1(2) =I

i1 -sinwt £22
e 8 0w 1 + 1 sin 2wt

+ 22cos 4wt + . (5.45)

55



Ignoring the higher order terms, the exponential becomes

t
iS w dt~~ic*

/ 2e -1 + i sinw (5.46)
8
0w

Expanding the demoninator of Eq (5.40),

1 1

L cs2wt + 2 cos4wt +... (5.47)

Finally, Eq (5.40) becomes

~ - 2I~.co 2wt"J:~~~o aW) o1 O2t sinwt...

0

x + i sin2wt e'0dt (5.48)

which is directly integrable, although messy. Expanding the

integrand and dropping terms of higher order than 2
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22 2i JW '.W t.
= 1 16 2-16o [[[

+ 
e 0

4w lw ) W

2 Q 2 i (W+3w)t
(1wO - o e 0

__ T 1
_____ N0w-3w) t+ ,2 e dt (5.49) .

2 -+-\l 6wow 4w 0 2d

Notice that. only odd harmonics of w are present in the expo-

nential terms. Absorption occurs only when a term becomes

slowly varying, when the exponential argument approaches zero.

Therefore, only an odd number of photons can be absorbed, in

this model. The conclusion corresponds to the conservation

of angular momentum. The angular momentum must change by one

unit in the transition, and photons have one unit of angular

momentum. Only odd combinations are possible.

Integrating Eq (5.49)

57



---. - -- . - 4 - . - -, "-' 
-  
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(1)~( +W) t2 ~
a2 2 e 0(1 -

aw 2 16w+

22o

04w 16w W W +

0 0

( .2 iiWg -W) t2 2 ei
2 + ( .5

1 4w 0 16 0w w-W 0

2  2 -

000

Isai ( o pr3t) t

tem+inete cotibt temso odr3a ecl

t a sni 2 e o

petraintrm 1 (.- Btl"

+ + o- (5.50)"

0 0  0 1

a I ) gets relatively large whenever w approaches wo'

the shifted transition frequency, or w/3 ,three photon -'

A absorption. If w--wo/3 ,then only the last term is of im-

'[ ... portance, and since wo'= ,!"i-

i - _ 3 s in-! (w'-3w) t (w ( '-3w) t". '
a i) ~-1 7 e (5.51),

24 8 W 2 w ._ - -
0 0

It is necessary to calculate higher order perturbation "

l~t•terms since they contribute terms of order Q3 Recall

that since the atom is initially in the ground state, the.--

perturbation terms a =a =0 .But, -.-

2i2
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a ( 2 )= t ( l ) W o : -
t a - sinwt eo dt (5.52)

which is similar in form to Eq (5.40). Expanding the inte-
2grand as before, using Eq (5.50) for 2 l) and dropping ""

higher order terms of n results in an integrable form. The

solution of a(2) is then used in the calculation of the
1

third order perturbation:

t t
t

a(3 )  a(2) w sinwt e fo (5.53)

Again, if wtw'/3 , only one physically significant term in

the integrand is slowly varying. Other unphysical terms are

also slowly varying, but these can be ignored as in the

previous case, Eq (5.16). The perturbation term becomes

- i(w '-3w) t

a (w)3 e dt (5.54)2ow 2iw (wo-w)

The result of the integration can be expressed as

(3) i 3 sin (wo- 3w)t !(Wo-3)t
a 2 - 2 e (5.55)

Wo (Wo-3w)

The final expression for a2  is a2 = a ) + a , which

from Eqs (5.51) and (5.55) is
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1..0

3 sinf(wo-3w)t .(w-3w)t
a 2  8- 2 e (5.56)8Wo (wo- 3w)  .

The probability of being in the upper energy level is

P2 (t) = a 2 (t)2

6 sin 21(w-3w)t2- 4 2 o 2 (5.57)

64w00  (w -3 w)
0 0

which represents the transition for three photon absorption

with the multipole Hamiltonian. The resonant frequency for

this transition is

Wo WO 2
W -3 3 + 2w0 (5.58)

The results for the multipole Hamiltonian, Eqs (5.57)

and (5.58) are much different than those of the other two --

Hamiltonians.

Comparison of Predictions

Calculations for the three Hamiltonians shows consider-

able differences in the predictions for the probability of a

two level atom, initially in the ground state, to transition

to the upper energy level. In each case, time dependent

perturbation theory was used to determine the probability.

The method is valid for relatively short time periods,

otherwise effects such as Rabi oscillations and spontaneous
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emission become important. In addition to the transition

rate difference, the multipole Hamiltonian case also showed

a Stark shift for a transverse electric field. The first two

Hamiltonians do not account for such an effect.

The differences in the upper level predictions is most

easily seen for radiation that is exactly on resonance,

= 0 /3 . The probabilities for the three cases are

93 81 S]6 t2(5 9)"
P 2Ap(t) = 931024 2 t (559)

2rE1024 2
81 6 t2P (t) = - (5.60)

0P2M6t =t 2  (5.61) i.

Thus,

P 42Ap - 10 P2rE 2x04 P2MH (5.62)

This demonstrates the order of magnitude differences between

the three choices. These differences are directly translated

to comparable differences in the absolute transition rates or

the Einstein B coefficients. The rate for the multipole

"Hamiltonian is the smallest by a factor of twenty. If the

absolute rate could be measured, it would strongly indicate

the correct choice for the energy operator.
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Absolute transition rates for a three photon process

are, unfortunately for this problem, difficult to measure.

First, there is a requirement for a very strong field to

obtain an appreciable amount of transitions. Assuming a "

sufficient source is available, there are problems with the

media itself. In crystals, the problem of wave vector

matching (25:76-78) severely hinders absolute measurements.

The problem is non-exponential absorption due to inter-

ference effects in the crystal. Another possibility for an

experiment is to measure the deflection of an atomic beam by

radiation pressure. An incident light wave can cause a beam

deflection based on the absorption rate (26). The primary

difficulty with this configuration is in generating a stable

beam that is slow enough to have a reasonable interaction

time.

The other major difference in the predictions was the

resonant frequency shift predicted only in the multipole

Hamiltonian case. Considering either the unperturbed or the

full atomic Hamiltonian as the energy operator allows no

shift due to a transverse electric field, although such shifts

have been observed for time varying fields (22). The predic-

tion of this Stark shift for the multipole Hamiltonian may be

the best argument for this choice as the energy operator.
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VI. Conclusion

The choice of the correct form of the Hamiltonian as the

energy operator has significant implications for physical pre-

dictions in quantum mechanics. Historically, two choices have

been predominant: the unperturbed Hamiltonian and the full

atomic Hamiltonian. Each results in different predictions as

indicated by their respective transition matrices. This

difference is often clouded by the equivalence of these two

forms under a unitary transformation. The argument for

equivalence is valid, based on interpretation of the eigen-

states, but it does not address the identification of the

atomic energy operator. This thesis has argued that both of

these choices are limited due to conflicts with either observed

phenomenon or physical laws, and neither represents the true

energy of the atom.

Another possibility for the energy operator exists in the

multipole expansion form of the Hamiltonian. It is derived

from the classical multipole energy expansion, and has the

correct classical limit of the Lorentz force law. The multi-

pole form is gauge invariant, and contains the total field,

so it does not violate special relativity. The dynamics of

this form aremuch more complicated than the previous cases,

which compounds the difficulty of making physical predictions.

Thus, for the purposes of first order approximations, the

unperturbed or full atomic Hamiltonian should prove to be an
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adequate, though not completely accurate, choice for the

energy operator. For finer applications, the multipole form

may provide the better model for the atom, and hence, a more

accurate explanation for physical processes.

Calculations for three photon absorption demonstrate

the differences between predictions of the three choices for

the energy operator. Order of magnitude differences exist

for the probability of transitioning to the upper state of

a two level atom. These directly translate to comparable

differences in the absolute transition rates. The multipole

Hamiltonian has a further distinction of predicting a Stark

shift for a transverse electric field. The other two Hamil-

tonians do not allow this shift in the respective models.

Experimental confirmation of the absorption prediction

or the Stark effect due to a transverse field is the final

proof of this thesis. Unfortunately, measurement of an

absolute three photon absorption rate is a difficult task,

and has not been performed. This is an area for further

investigation. In addition, Stark shifts have been observed

in numerous experiments (22). Further study of those experi-

mental results and the methods of analysis is warranted.

The Stark effect may provide the best confirmation of the

correct energy operator.

Another suggestion for future work is to consider the

affect of spontaneous emission in the absorption calculations.

The steady state solution to a density matrix perturbation r
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calculation should give the absorption rate for long inter-

action times, and spurious zero frequency terms, previously

disregarded, should be damped out.

Other recommendations include the investigation of

absorption sidebands, observed by Townes (21:273-279), and

atomic lineshapes. These areas may provide further arguments

for choosing the multipole Hamiltonian as the atomic energy

operator.
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